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SUMMARY

A use is made of conformal mapping to determine equations that

express the additional apparent mass of scalloped and/or clustered

cylinder configurations in terms of the cross-sectional area of the

configuration and the coefficients of a Fourier expansion of the loga-

rithm of the radius vector of the configuration contour curve. Appli-

cations are made to several configurations and comparisons with experi-

mentally determined results are made for three of the configurations

considered. The calculated and experimentally determined results are

found to agree satisfactorily.

INTRODUCTION

A means for calculating the stability derivatives for a given body

submerged in an incompressible fluid is through a use of apparent addi-

tional masses or inertia coefficients that may be associated with the

body as it undergoes various accelerated motions; see, for example,

discussions on equations of motion and stability of bodies as presented

in references i and 2. If the body under consideration is slender,

certain of its stability derivatives can be closely estimated by the

well-known crossflow concept of Munk (ref. 3) and Jones (ref. 4) in

which case the inertia coefficients of interest are those associated

with a two-dimensional potential flow about the local cross sections

of the body. (See refs. 5 to 7.) Of current interest in connection

with slender bodies are the inertia coefficients for sections of con-

figurations resembling a cluster of circular cylinders, for example_ the

Saturn boosters_ or perhaps cylindrical tanks with lengthwise corruga-

tions that form a scalloped cross-sectional shape. These configurations

will hereinafter be referred to as clustered and scalloped cylinders.



The inertia coefficients for a given configuration submergedin a
perfect fluid mediumcan be directly related to either the kinetic
energy imparted to the fluid or to the total forces that act on the
configuration as it is accelerated in the fluid. This kinetic energy
and/or these forces can be determined from a knowledge of the velocity
potentials or_ in the case of two-dimensional considerations, the com-
plex potentials associated with the motions that the configuration
undergoes. Moreover, in two-dimensional considerations the complex
potentials, and hence the inertia coefficients, can be determined by
meansof techniques of conformal mapping which have been highly devel-
oped in connection with airfoil theory; see, for example, references 8
and 9.

Expressions of the inertia coefficients for a variety of configu-
rations, not including clustered or scalloped cylinders_ however_ can
be found in references i to 7. The purpose of this report is to make
use of conformal mapping techniques to develop rather general expres-
sions that will yield the inertia coefficients associated with trans-
lations of either clustered or scalloped cylinders. These general
expressions are then applied to an elliptic cylinder (scalloped cylinder
with only two lobes), for a comparison with known results, and to two
special configurations for comparisons with experimentally determined
results.

SYMBOLS

A

An, Bn,

a, b

an_ bn

F_, F1]

g

Z, L

MO

cross-sectional area

constants associated with transformation of velocity

potential in L-plane (see, for example, eq. (13))

semiaxes of an ellipse in L-plane

constants associated with velocity potential for an arbi-

trary cylinder (see eq. (i))

force per unit length acting at angle

components of force per unit length parallel to _- and

R-axes, respectively

acceleration due to gravity

lengths

reference mass constant



M_

m

N

apparent additional mass per unit length associated with

accelerations in direction

mass

number of circular cylinders involved in clustered

configuration

integer

radii

RO'c RI' R2' R31

Rm e*(e) , e

Rme _0_ q_

r

t

U_ u_ v

V

w

x, y, _, h

z =x+i__+i

c=e -q_

hnCn_ hnSn

P

XI, X2

constant s

polar coordinates in L-plane

polar coordinates in z-plane

radius vector

time

velocities

volume

complex potential

Cartesian coordinates

complex variables

angle measured counterclockwise from [- and x-axis

parameters

Fourier coefficients

fluid density

functions of _, N,

and (64))

CI, C2, and so forth (see eqs. (56)
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ANALYSIS

A complex function of appropriate form is chosen to represent the

complex potential associated with a cylinder of any cross-sectional

shape (without circulation) and from a consideration of forces, and

reactions thereto, acting on a section of this cylinder an expression

for the apparent additional mass in terms of the cross-sectional area of

the cylinder and certain constants appearing in the potential function
is deduced•

The Complex Potential Function and

Apparent Additional Mass

For convenience, the origin of coordinates is chosen to be fixed at

the centroid of a cross section of the cylinder and a fluid of constant

density p is assumed to stream past the cylinder, normal to its axes,

at some velocity U(t) from a direction that makes an angle _ with

the axis of reals (L-axis) as indicated in figure i. It is further

assumed that the cylinder is without circulation or rotation. Under the

aforementioned assumptions the complex potential, w(_) will be of the
form

It " al + ibl a2 + ib2
w(_) = -U(t) e -Ic_ + + + . an + ibn .h• . + (i)

{n ]

where _ = _ + i_ is a complex variable, U(t) is the magnitude of the

velocity at infinity and ai_b i are constants that depend on the cross-

sectional shape of the configuration and the direction of velocity _.

The velocity components u and v parallel to the _ and D axes,

respectively, are given by the relation

d_xw: _ _ iv (2)
d_

By a use of an extended theorem of Blasius (see, for example, sec-

tions 9.52 and 9-53 of ref. 2) the components of force per unit length

F_ and Fq parallel to the _- and _-axes, respectively, that act on a

section of the cylinder may be expressed as



F_ = -p_2_a I - A cos _) (3)

and

F_ = -_2_bl - A sin _)
(4)

where A is the cross-sectional area of the cylinder and aI and b I

are proportional to the real and imaginary parts, respectively, of the

residue to the potential function. (See eq. (i).) The force acting on

the section of the cylinder in any direction in the plane of the section

can, of course, be found by appropriate projections of the components of

force F_ and Fq. For example, the force F_ acting through the

centroid of the cylinder section and in the direction _ of the stream

is

F_ = F_ cos _ + F_ sin _ = - _ i cos _ + b I sin _ -

It is of interest to note that a projection of forces normal to the

direction _ gives

F(_+2) = FN cos _ - F_ sin _ =-2P_t(b I cos m- aI sin _)

(6)

As will be seen at a later stage of this analysis, this normal component

of force is generally zero for clustered and/or scalloped cylinders. For

cases where it is not zero, it would cause the cylinder section to rotate

unless a restraining force of equal magnitude were employed.

Associated with the component of force acting in the direction

on the cylinder section is a reaction in the fluid, the net total of

which corresponds to an opposing force. This opposing force may be

expressed as a product of time rate of change in fluid velocity and an

appropriate coefficient M_ having the dimension of amass per unit

length

_U _ _FcL (7)
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This mass term M_ represents the additional apparent mass or inertia

coefficient of interest in the present analysis. It may be expressed in

terms of p, A_ al, bl_ U 3 and _ by eliminating F_ between equa-

tions (5) and (7). There is obtained

M_ = 2_p_al cos _ + b I sin s)- _I
(8)

Equation (8) represents a key result in the present analysis. In this

equation the cross-sectional area A for any given configuration can be

considered as known. Thus the problem of determining M_ becomes one

of determining the residue (aI + ib_ of the complex potential for the

configuration under consideration. To this end the technique of con-

formal mapping developed in connection with potential theory of arbitrary

wing sections (refs. 8 and 9) are readily adaptable.

Conformal Mapping as it Pertains to the Present Analysis

As in potential theory for two-dimensional airfoils of arbitrary

shape 3 the basic problem in the present analysis is to determine a

conformal mapping function subject to restrictions pertaining to points

at infinity that will transform a cylinder of arbitrary cross-sectional

shape into a circular cylinder. The inverse of this mapping function

will, of course_ map the region outside the determined circle into the

region outside the given closed area. Furthermore_ this inverse mapping

function will map a potential function for the circle into a corresponding

potential function for the closed area. Hence_ if one determines the

mapping function that will transform a cylinder of given cross-sectional

shape into a circular cylinder, the coefficients an + ibn (eq. (I)) can

be readily obtained from the inverse transformation and the noncirculatory

potential function for a circular cylinder. Details of the method of

determining the appropriate mapping functions are set forth in the fol-

lowing section.

The Mapping Function and Residue of the Complex Potential for a

Clustered or Scalloped Cylinder Configuration

Let a cross section of the given cylindrical configuration be

assumed to be in the S-plane with its boundary defined by
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= *(e)÷ie (9)

where @ = tan -l _ is the polar angle, Rme*(@) = _2 + _2 is the

radius vector to any point on the boundary and , is a known function

of 8. (See fig. i.) The constant Rm is introduced simply to preserve

dimensions and for definiteness can be taken as the maximum radius of the

configuration. Now let it be required to transform this configuration

into a circle in the z-plane defined by

z = Rme*o+ie (io)

where _ is the polar angle and Rm e*O (a constant) is the radius of

the circle. The general transformation for this purpose is found in the

developments of references 8 and 9 to be

i = exp f(z) (ll)
z

where f(z) is an infinite series of inverse powers of z. For clustered

and/or scalloped cylinder configurations it is found convenient because of

symmetry, to expressthis series as

=_-- A n + iBnf(z) (12)
A___
n=l znN

where N is the number of cylinders in the cluster (or corrugations on a

scalloped configuration) and An and B n are constants, the determina-

tion of which will be discussed along with the constant 40 in the fol-

lowing section. Note that at infinity the transformation defined by

equations (ii) and (12) preserves the i:i correspondence of _ and z

and that ]d_z_[ = i.

By making use of equation (12) to expand the exponential term in

equation (ii), the first few terms of the results may be written as



ll A1 + iB1=z + zN +

-I-

(A2÷_2) +i(_2+D2)
z2N

+i( 3+o3+ +. •iz_
(13)

where

C2 = A12 - B! 2

E3 = A13 - 5AZB121

D2 = AiB1 D3 AIB2 + BIA2 _ (14)

F3 BZ3- 3Az2BIJ
C3 --AIA2 - BIB2

Inversion of equation (13) gives for the first few terms of z in terms

of

A3 + (3N- I)C3 + _ - I)2E3 + liB3+ (3N - I)D3 + _3N- I)2F_
(15)

Now the complex potential for a circular cylinder of radius
out circulation is

_0
Rme with-

w(z) =-UIze-i_ + Rm2e2_ Oeim)
(16)

Substituting the expression for z given in equation (15) into equa-

tion (16) and expanding gives the potential for the cylinder configura-
tion
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W(_) = -U e-l_ A I + iBlc_iC c _
A2 +

2 240 ._

• Rm2e2_O(A1 + iB1)_ioc +

+Rm'_ _+ _N+I _ " "
(17)

These few terms of the complex potential are enough to determine the

residue aI + ibI. Note the similarity of this potential function with

that given in equation (i) and also note that the residue depends on the

value of N; that is,

for N = lj

= - __ + e -is
al + ibl Rm 2e2_0elcc 2 + 2

_/ 2 2_0 __2.2)sin
+ i L_Rm e + A 2 + (B2+D oos (18)

for N = 2,

aI + ib I = Rm2e2@Oe i_ _ (A1 + iB1)e -i_

= I(Rm2e2*0 - AllCOS cc - B1 sin cc1

+ i_Rm2e2*0 + A_sin c_ - B1 cos _

for N > 2;

2e2_0eiCC 2e2_0
aI + ib I = Rm = Rm (cos _ + i sin (_)

(19)

(20)



i0

A clustered or scalloped cylinder configuration generally implies a value

of N greater than unity. Thus 3 substituting values of aI and b I

obtained from equations (19) and (20) into equation (8) gives:

for N = 2 3

M_ = 2_pI(Rm2e2_0- 2_)- A1 cos 2_ - b I sin 2_1
(2m)

and for N > 2 3

Ma' = 2_P( Rm2e2::_0 2_') (22)

Observe that the expression for M_ depends on the direction of motion

when N = 23 but is independent of _ when N > 2. Also if the values

of a I and bl, obtained from equation (20), are substituted into the

expression for the component of force F _ normal to the direction of
eL+-

2

motion (eq. (6)) it is found that this component of force vanishes when
N > 2.

Determination of @0, AI, and B I

By substituting the expression for _ given in equation (9) and
the expression for z given in equation (i0) into the transformation

given in equations (ii) and (12), there is obtained

+ IV A(_+ loin (e_ nN" cos nN_ - i sin nN__

By equating exponents on the two sides of this equation and then sepa-

rating real and imaginary parts 3 there are obtained conjugate Fourier

expressions for the differences _ - @0 and e - % namely,

oo

o)
cos nNq_ + B n sin nN_)

(23)

(24)
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O0

e - q_ =_--- i nN(B n cos nN_ - An sin nNq_) = e(M ) (25)

l (.e%)

It should be noted that through equation (25) e may be considered as a

function of _ or, vice versa, M may be considered as a function of

e. It can now be recognized that 40 and the coefficients A n and B n

must have the following values (see, for example, ref. 8):

_0 = 2_ $02_ @(8)dM

nN

(.o,0)An : _ ,(e)eos n_ d_

(Rme¢°) nN $o _Bn = ,(8)sin nN_ dM

(26)

(27)

(28)

It is known that two conjugate Fourier series, such as those in

equations (24) and (25), are related to one another through various

forms of Poisson's integral. A convenient form of this relation for the

present purpose (see ref. i0) is

$0 2_ _'
e(M) = 1_ ,(e)cot - _ dM' (29)

2_ 2

This important relation, which may be looked upon as a functional

equation relating @le(_)l and e(_) is conducive to a rapidly con-

verging iterative procedureUJ for determining _[6(_)_, and hence @0 and

the coefficients An and Bn, from equations (26), (27), and (28).

r. -%

The scheme of iteration for @IS[M)I is simple in principle but

involves some tedious expansions that are avoided in the examples in

references 8 and 9 by recourse to graphical methods. The scheme is

briefly outlined in the following paragraph and then applied to a general

expression appropriate to clustered and scalloped cylinder configurations.
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The Schemeof Iteration and Results for a Cylindrical

Configuration of Arbitrary Shape

It should be recalled that 4 is assumedto be initially known as
a function of e. As a first step in the iterative process then_ the
conjugate to 4(8) is determined by a use of equation (29) with
replaced by 8. Whenthe conjugate to 4(8) is denoted by el(8), the

l

next step is to form the function 418 + el) and determine the conju-

to this function. Then 4(8 + e2_ is formed and its conju-gate E 2
l

gate e3 is determined and so on. This process of iteration is logi-

cally termed "successive conjugates" in references 8 and 9. It is

demonstrated and emphasized in these references that only a fewt itera-

tions or successive conjugates are usually necessary before 4_8 + en)

4_(_)_- This is borne out in the followingsatisfactorily toconverges

applications.

The logarithm of the radius vector Km e4(8) of the cross-sectional

shape of any clustered or scalloped cylinder configuration can be

expressed as a trigonometric series of the form

log e4( : log Rm + 4(8) = log R0 + _ hn n cos nN8 + Sn sin nNS]

n=l

(3Oa)

or

OO

+ _--- hn(C n COS nN8 + Sn sin rune) (3Oh)
n=l

where R0 is a constant of linear dimensions and h, Cn, and Sn are

nondimensional constants. The constant h, which may be a parameter

peculiar to the configurations at hand or simply a chosen factor for the

original coefficients of the trigonometric terms in the expansion of 4,

is factored out for convenience in the following developments.

In view of the following relations (see, for example, ref. ii)

2x _ - 8 d_ 0 (31a)
cot

2
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fO 2_
i e d_ = -sin me

cos ms cot _ -2
(3lb)

and

2_

1 / sin m_ cot _ - e d_ = cos m8

Jo 2
(31c)

the conjugate ¢i to @(8) (eq. (3Oh)) is

oo

el(8 ) = _--- _n(s n cos nN8 - Cn sin nNe)
1

(32)

Following the procedure discussed_ in the_ foregoing paragraphs the next

step is to form the function _fe + _i]. That is,
\ _j

_f(e + el) log(_)+ t hn_n nN(8 + , Sn sin nN(8 el)_
= cos eli + + (33)

n=l

In order to obtain the conjugate c2 to this expression the right-hand

side may be expanded into a Taylor's series about cI = 0 and the

results rearranged in powers of _. Terms of the expansion up to and

including _2 are

)_(_+_0__o_-+ _ +_ +_(0__o__ +_ _n_0)Rm

+ ($2- NSlCl)sin 2Nel + • • •
(34)

Comparison of equation (34) with equation (24) indicates that to a first

approximation 40, AI, and B I are as follows:
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Ro _2 #_ 2 2)40 log_ + _-\_l + Sl

N
AI = _(Rme O)C1

(35a)

(55b)

Bl _(_e4°) N: sI (35c)

The expanded expression for the conjugate e2 is found from equa-

tion (7)4) to be

os 0 o
- C2 - 2 1 2 1 j sin 2Ne + . .

(36)

The next step is to form the function #_e__ + e2) and then expand about

e2 = 0 and determine e3, and so forth.

By extending the expansions of 4(_ + el) _ _(0 + _2) , . to

include higher powers of _ and proceeding as indicated in the fore-

going, all terms involving _ to powers up to and including the sixth

are found to have converged after three iterations; that is,

(37)

This relation indicates that, if h is small, the process converges very

rapidly m_he=ore, theconvergedte_s of 4(e+ _3) willgenerally
be found to be sufficient for treating clustered or scalloped cylinder

configurations such as would be used for missile boosters. Expressions

for 40 , AI, and BI correct to the sixth power of X are found to

involve at most six of the infinity of coefficients indicated in equa-

tion (33), namely, CI, C2, C3, Sl, $2, and S3. The expressions

are as follows:



-_- ±2

+ s32)+38 (cic c3192 +

= i+--_ - 2

N_ F

+ 2ClSlS2) - N2(Cl2 + S12)2]

+ CIS2S 3 + SIC2S 3 - SIS2C3)

CIC + SIS2) -

+ 24N(9C12C 3 -

_NC I (CI2 + S12 _

9s12c3 + 18ClSiS _

- 2CIC22 _ CIS22) - 56N2(5C13C2 + 6C12SIS2 + 3CIC2S12 + 4S13S2)

2SIC22 2SIS22-]

+ + -gg-oz_ I + sl2

(39)

(40)
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Equations (38), (39), and (40) taken in conjunction with equations (21)

and (22) constitute the main results of this analysis. The results are

next applied to some specific configurations.

APPLICATIONS AND COMPARISONS WITH EXPERIMENTAL RESULTS

In order to confirm the correctness of the foregoing analysis, appli-

cation of the results is first made to an elliptic cylinder for which an

exact analytical expression for the apparent additional mass is known.

Applications are then made to some cylinder shapes that would be of inter-

est in connection with clustered and scalloped cylinder configurations.

Some of the results of these applications are then compared with experi-

mentally determined results.

Application to an Elliptical Cylinder

The cross-sectional shape of an elliptic cylinder may be expressed
in Cartesian coordinates as

_2 h2

a--Z + _ = i (a > b) (41)

In polar coordinates _ = r cos e, h = r sin e, the radius vector of the

ellipse is conveniently expressed as

where

r = Rm e_(@) = (i + _)b l

_i + _2 _ 2_ cos 28

(42)

; a-
-a-b<l [

a+b I
J

Taking the logarithm of each side of equation (42) gives

(43)
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--log(i+ i log(l + ,2 _ 2_ cos 28)
2

2

= log __----+_ cos 28 + Z___cos 48 + @

_m 2

_n
. + -- cos 2n8 + . .

n
(44)

By comparison with equation (30b) the various parameters are found to

have the following values:

N=2

(45)

Cn =l-
n

Sn =0
J

Substituting these quantities into equations (38), (39), and (40) gives:

_4 .6
*0 = iog(l - .) + .2 + 2 3

(46)

The cross-sectional area A

B I = 0

of the cylinder is

(47)

A = _ab (48)

Substitution of the expressions for 90, AI, and A into equation (21)

yields
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M_ = 2_p 2(i + _)2(i - _ cos 2_)exp 2 + _- +

It may be noted that for _ = O, which implies that b = a, this

expression reduces to

(49)

= 2 (5o)

corresponding to the results for a circular cylinder of radius a. The

exact expression for the apparent additional mass of an elliptic cylinder

is (see ref. 7, page 239 for the equation for kinetic energy imparted to

the fluid)

Ms = _o(a2sin2_+ b2cos2_) (51)

This expression may be written in terms of _ as

1 - _2

Since the logarithmic term in this expression can be expanded to yield

(52)

la W'4 W6 la2n )
i = 2 2 +__+__+.,, __+ . . (53)

l°g fl _ 2,2L ) 2 3 n

it may be seen that the argument of the exponential function in equa-

tion (49) is the same as the first few terms of this expansion. In fact

for values of _ less than about 0.5 (corresponding to values of eccen-

tricity as large as 0.95), equation (49) gives essentially the same

results as equation (51). In order for the procedure to apply well to

cylinder shapes with higher eccentricity, or values of W near unity,

one would need to either extend the iteration discussed in a foregoing

paragraph to include terms involving v to higher powers than the sixth

or to employ an intermediary transformation, as discussed for example in

references 8 and 9 in connection with airfoils, that would first trans-

form the cylinder shape into a near circle. Such an intermediary trans-

formation is not needed with the type of cylinder configurations con-

sidered in the following paragraphs.
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Application to a Family of Scalloped Configurations

The equation of the radius vector of the periphery of the scalloped

configuration considered may be expressed as

r = Rme _(e) = R(I + C cos Ne) (54)

where R is a dimensional constant_ C is a nondimensional constant, and

N _ 3. A sketch of the configuration for N = 8 is shown in figure 2.

In the numerical examples that follow, the constant C is chosen so as

to make the ratio of maximum radius vector to minimum radius vector a

definite function of N. That is, for a given value of N, C is deter-

mined from the relation

i + C_ (i + sin _)cos A 0 (55)

where

tanAo = _- i (56)

Taking logarithms of equation (54) and expanding gives

R0

_(e)--log_ + log(l+c cosNe)= log_ + y--1_ncncosMe
(57)

where

_ 1 -41 - c2 (58)
C

and

Cn = 2(-i) n+l (59)
m

RO_ C (60)
% 2_(i+ c)
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The cross-sectional area of the configuration under consideration is
found to be

/oA = 1 r2de = + C2/ .-.(61]
2 2 "

By making use of equations (59) and (60) and noting in equation (57) that

Sn = O, the expression for 9.0 (eq. (3$)) pertinent to the configuration

can be written as

9"0 = log 2_(1C+ C) + X1 (62)

where

X 1 = N _2 + 7_4(1 _ 2/I - 2/t 2) + - 8N - 5N2 + 14N ]5 + llN (63)

The expression for M_ (eq. (22)) thus becomes

M_= - 2+C 2 (64)

It is convenient to refer the apparent additional mass of a given con-

figuration to the apparent additional mass M 0 of a circular cylinder.

For this reference choose the cylinder with radius equal to the mximum

radius Rm of the configuration. In the present case

Rm= R(I + C) (65)

Hence

and

Mo : _R2(z + c) 2 (66)

Mo_ = i _C_2e2X1 _ (2 + C2_, (67)

MO 2(1 + C) 2
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This equation has been evaluated for N = 3, 4_ . . . 8 and the results

are shown plotted as discrete points in figure 3. As may be noted in

this figure_ the ratio of masses range from about 0.81 for N = 3 to

about 0.93 for N = 8. About the same results are obtained for this case

if the terms involving _6 in X I (eq. (63)) are ignored. Hence these

results indicate almost complete convergence of the iterative process of

determining 40 for this case.

Clustered Cylinder Configuration

The expression for _(e) pertaining to a cluster of N circular

cylinders can be obtained from a consideration of the equation of the

part of the periphery pertaining to one of the N-cylinders in the

cluster. For this purpose let the polar axis of the polar coordinate

system be so chosen that the angular coordinate of the cylinder centers

3_ 2p - i__. (See fig. 4.) The equation of the part of
are N' N--' " " " N

the periphery pertaining to the cylinder with center at e = _, r = R 3

may then be written as

0 _ 8 _) (68)

f

Note that for this case Rm = R3_l + sin _. Taking logarithms of

equation (68) and expanding the results into a Fourier series in the

interval 0 =< e =< 2_y__gives the expression for _(e) pertinent to the
N

configuration under consideration. There is obtained

4(8)--log + co +
oo

_-- Cn cos nN@

n=l

(69)

where X is considered to be unity and the coefficients CO and C n

are determined as follows:
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C0 N SON= _ log os 8 + os28 - cos2 de

zog (7o)

(see ref. 12) and

Cn = (-l)n 2/_ $0N (c _ N)_-- log os 8 + cos28 - cos 2 cos nNe d0

= (-1)n 2_[-_- cos e - cos + e

j2( os O - cos _

d8

(71)

where
PnN_l and

2

PnN denote Legendre functions (see ref. 13).

2

where

The expression for 40 for the present case can be written as

"% = log ee + X 2

X 2 = _ 12 + 22 + 4NCz2C2 - N2C 1 + 88C32 + 384NClC2C 3

The cross-sectional area of the configuration under consideration is
found to be

(72)

(73)
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Hence,

= N N
(74)

M'--_= 1 I 2e2X2 -sin _I + Nlsin _ + N cos N1 (75)

This expression has been evaluated for N = 3, 4 . 8 and the results

are plotted as discrete points in figure 5. The ratio of apparent addi-

tional masses for this case may be noted in figure 5 to be slightly

higher (ranging from about 0.86 for N = 3 to about 0.96 for N = 8) than

results for the scalloped configuration in figure 3. Dropping the terms

involving _6 in X 2 (that is, the terms in square brackets in equa-

tion (73)) gives slightly lower values of the ratio Mc_/MO, especially

for lower values of N. For example_ for N = 3, the value of the ratio

obtained when the terms involving _6 are not included is 0.840 whereas

the value is 0.865 when these terms are included. For N = 8, however,

the two values are 0.957 and 0.964; thus there is almost complete con-

vergence even when the _6 terms are not included in the value of X 2.

EXPERIMENTAL REStULTS AND COMPARISONS WITH THEORY

Experimental Results

Experimental values of the apparent additional mass of a scalloped

cylinder configuration, a clustered cylinder configuration_ and a single

circular cylinder were determined by using water as a medium. The outer

boundary of a cross section of the scalloped cylinder configuration

(see fig. 2) is described by equation (54) with N = 8. The outer

boundary of the clustered cylinder configuration (fig. 4) is described

by equation (68) with N = 8.

All the models were about 15.4 inches long and both the scalloped

cylinder and clustered cylinder configurations had maximum radii of

about 2.7 inches. The radius of the circular cylinder was 3.0 inches.
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Each model was equipped with end plates and was suspended by 8 small

cables arranged as shown in figure 6. The intended purpose of the end

plates was to increase the effective length of the models and the cir-

cular cylinder model was tested to obtain an estimate of the adequacy

or effectiveness of the end plates.

A cylindrical configuration suspended as indicated in figure 6 will

behave as a simple pendulum with arm length _ when each of the 8 cables

is initially displaced through the same angle 90 (see view (b) in

fig. 6) and released simultaneously. Hence, if the model is suspended

in a fluid of density P and if all forces that contribute to drag and

damping are neglected, the equation of motion may be expressed in terms

of the angle _ as

(76)

where M denotes the mass of the model (cylinder plus end plate),

denotes the total mass of fluid accelerated by the cylinder or the

apparent additional mass, V denotes the volume of the model, Pc

denotes the mean density of the model, and g is the acceleration due

to gravity. The appropriate solution to equation (76) is _ = 90 cos _t

from whlch one can obtain the following expression for M_

gv= - PJ - M (77}
7,¢_2

Thus, with a knowledge of g, V, Pc' D, Z, M, and the measured

frequency _ of the pendulum one can determine _. In comparing

experimental_results with calculated results, it was found convenient

to express M_ as a fraction 8 of the maximum radius Rm of the

cylinder as

where L is the length of the configuration. Substituting this expres-

sion into equation (77) and solving for 8 gives
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8 'L_r:a_2LL _2 - (?'9)

Comparisons of Experimental Results With Analytical Results

As may be determined from the preceding section or from figures 3

and 5, the calculated results correspond to a value of 5 of about 0.96

for the scalloped configuration and about 0.98 for the clustered cylinder

configuration. The calculated value for the circular cylinder configura-

tion is, of course, unity.

Values of 5 determined experimentally and analytically for the

three configurations tested are given in columns 8 and 9, respectively,

of table I. The difference between the analytical and experimental

values of 8 for the circular cylinder (1.O0 and 0.975) were used as a

measure of the error in the experiment which was due to such things as

the neglect of drag forces on both the configurations and the suspension

cables, effect of wave motion, and possibly other factors in the equation

of motion. Hence, the experimentally determined values of 5 for the

scalloped cylinder configuration (0.938) and the clustered cylinder con-

figuration (0.941) were multiplied by the ratio 5anal/Sex p of the

circular cylinder to obtain the adjusted experimental values which are

presented in column l0 of table I. Comparison of the analytical and

experimental values of 6 shows that the values obtained by analysis

are a bit high but still in substantial agreement with measured values.

CONCLUDING REMARKS

It is concluded from the foregoing analysis and experimental evi-

dence that the apparent additional mass of scalloped and/or clustered

cylinder configurations can be accurately estimated from a knowledge of
the cross-sectional area and the first few coefficients of a Fourier

expansion of the logarithm of the radius vector of the configuration.

It is remarked that the analytical procedure employed is not restricted

to configurations for which equations of the periphery are known

analytically because, with the use of harmonic analyses, the procedure

can be readily adapted to graphically given configurations.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., May 14j 1962.
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- plane

Figure i.- Rectangular and polar coordinate systems for a clustered

and/or scalloped cylinder configuration in the L-plane. N = 4.
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Figure 4.- Clustered cylinder configuration with N = 8.
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(a) Side view of suspended

cylinder.

(b) End view of suspended

cylinder.
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(c) Cutaway view of setup.

Figl_e 6.- Sketch of experimental setup showing the clustered cylinder

configuration with N = $ and the suspension system.
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